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We study the dynamics of the Olami-Feder-Christensen �OFC� model of earthquakes, focusing on the
behavior of sequences of epicenters regarded as a growing complex network. Besides making a detailed and
quantitative study of the effects of the borders �the occurrence of epicenters is dominated by a strong border
effect which does not scale with system size�, we examine the degree distribution and the degree correlation of
the graph. We detect sharp differences between the conservative and nonconservative regimes of the model.
Removing border effects, the conservative regime exhibits a Poisson-like degree statistics and is uncorrelated,
while the nonconservative has a broad power-law-like distribution of degrees �if the smallest events are
ignored�, which reproduces the observed behavior of real earthquakes. In this regime the graph has also an
unusually strong degree correlation among the vertices with higher degree, which is the result of the existence
of temporary attractors for the dynamics: as the system evolves, the epicenters concentrate increasingly on
fewer sites, exhibiting strong synchronization, but eventually spread again over the lattice after a series of
sufficiently large earthquakes. We propose an analytical description of the dynamics of this growing network,
considering a Markov process network with hidden variables, which is able to account for the mentioned
properties.
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I. INTRODUCTION

Several different phenomena in nature spontaneously ex-
hibit scale-invariant statistics. An attempt to identify a sup-
posed basic mechanism behind this behavior was made by
Bak et al. �1�, who introduced the concept of self-organized
criticality �SOC�. SOC is characterized by slowly driven sys-
tems, with fast avalanchelike bursts of dissipation. Despite
probably not being the sole explanation for scale invariance
in nature, a wide range of systems do appear to exhibit SOC,
such as sandpiles �1�, forest fires �2�, and earthquakes �3�.
However, no general framework for SOC systems exists, and
the mechanism behind it is not very well understood. In par-
ticular, the existence of SOC in nonconservative systems is
still debated �4–6�. This discussion is frequently focused on
one of the most studied and archetypal nonconservative SOC
models, the Olami-Feder-Christensen �OFC� model for
earthquakes. Despite being defined by very simple rules �see
Sec. II�, this model possesses very rich dynamics, and is able
to reproduce a wide range of statistics of real earthquakes,
such as the Gutenberg-Richter law for the distribution of
event sizes �3,7� and the Omori law for fore- and aftershocks
�8,9�.

In this work we concentrate on the behavior of the epi-
centers in the OFC model, in both the conservative and non-
conservative regimes, studied as a growing complex network
with scale-free behavior �10,11�.

As known previously �4,12�, we confirm that in both re-
gimes epicenters are more frequent closer to the border, and
we study this effect in detail. We show, however, that this
border effect does not scale with system size, and should not
therefore be considered representative of the dynamics of the

model in the thermodynamic limit. The length of the effect is
dependent on the level of dissipation, and is relatively large
for the range of parameters normally studied, especially
when close to the conservative limit, where an exponentially
decaying layer dominates, and it is hard to observe anything
else other than this border effect. The existence of this non-
scaling border is in accordance with what was found in �4�,
that only earthquakes from a smaller internal subset of the
lattice exhibit finite-size scaling in the event size statistics.

We turn then to the dynamics of epicenters. Recently
there has been an increasing interest in complex networks
�13� as a tool for describing very diverse systems, many of
which exhibit a type of scale invariance that seems to be due
to a general mechanism of preferential attachment �14,15�. In
order to study the epicenter dynamics in the OFC model, we
construct a network of consecutive epicenters in the bulk,
and examine its properties in more detail.1

The network of epicenters, in the nonconservative regime,
shows scale invariance in the degree statistics, if the epicen-
ters of the smaller events are discarded. This network has
also an unusual correlation among vertices of high degree,
which makes it very distinct from networks created with a
preferential attachment rule. These results reproduce what
has been found by Abe and Suzuki �16,17� for real earth-
quakes, further contributing to the success of this simple
model in capturing the essential earthquake dynamics. We
show that this degree correlation seems to be due to the
existence of temporary attractors for the dynamics, which
shows periods of strong synchronization. We also noticed
that a drop in the average in-degree of the network seems to
precede big earthquakes, which could in principle be used to
predict at least an increase in the probability of big events in
a given fault.

*Electronic address: tpeixoto@if.usp.br
†Electronic address: prado@if.usp.br

1In a previous study �10�, we also analyzed some aspects of the
same network, but did not take into account the border effect, and
looked only at smaller lattices.
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We also show that is possible to reproduce some of the
characteristics of the complex epicenter network found in the
nonconservative version of the OFC model by defining a
growing procedure based on a Markov chain with hidden
variables. To each possible epicenter �vertex� is attached a
hidden variable, and the probability of connections among
epicenters �related to the time sequence of events� is now
given as a function of the hidden variable of both vertices
�instead of a simple preferential attachment rule, as in a
Barabási-Albert-type network �15��.

This paper is organized as follows. In Sec. II we briefly
present the Olami-Feder-Christensen model for earthquakes;
in Sec. III we discuss in detail the way the spatial distribu-
tion of epicenters depends on the distance to the borders, in
the conservative, nonconservative, and “almost conserva-
tive” regimes; in Sec. IV we review the way we can build a
scale-free network from the time series of epicenters, and
present the main properties of this network when the border
effect is discarded. This network, although showing a scale-
free behavior, is quite different from Barabási-Albert-type
networks, with a strong correlation among vertices with high
degree. In Sec. V we show how we can grow a network with
similar properties based on a Markov chain process with hid-
den variables and, finally, in Sec. VI, we summarize our
results.

II. THE OFC MODEL

The OFC model �3� was inspired by the Burridge-
Knopoff spring-block model �18�, and is defined as a two-
dimensional �2D� coupled map on a square lattice. To each
site �i , j� in the lattice is assigned a “tension” zij, initially
chosen at random from the interval �0,zc�. The entire system
is driven slowly, with every zij increasing uniformly. When-
ever a site reaches the threshold tension �zij =zc�, an ava-
lanche starts �the “earthquake”�. The first site to reach zc and
start an avalanche is called the epicenter. A fraction � of the
tension of the toppling site is transferred to each of its four
neighbors �zi±1,j±1=zi±1,j±1+�zij�, and its tension is set to
zero �zij =0�. If any of the neighbors acquires a tension
zi±1,j±1�zc, the same toppling rules are applied, until there
are no more sites in the system with zij �zc. Without loss of
generality, we set zc=1. The total number of sites that topple
until the avalanche is over is called the “size” of the ava-
lanche. The parameter � defines the level of local conserva-
tion of the system. For �=0.25 the system is locally conser-
vative and for ��0.25 it is dissipative. We consider here
only the case with open boundary conditions, i.e., the sites at
the border of the lattice transfer tension to nonexisting neigh-
bors, so the system is always globally nonconservative, but
tends to conservative in the thermodynamic limit if �=0.25.

III. INFLUENCE OF THE BORDERS ON THE
FREQUENCY OF EPICENTERS

We find that, in the stationary regime of the OFC model,
the number of times a site is an epicenter varies according to
how close that site is to the border, with epicenters closer to
the border occurring much more often. We will refer to this

excess of epicenters in the borders as the border effect. Fig-
ure 1 shows the average frequency with which a site was an
epicenter, given its distance from the border, for �=0.25,
0.249, 0.22, and 0.18. We have gathered statistics from two
lattice sizes L=400 and 800, and considered at least 6
�106 events �after the transient�. We have considered epi-
centers only of earthquakes larger than 1 �s�2�, since size-1
earthquakes seem to obey their own statistics �19�. We have
also considered epicenters that gave rise to larger earth-
quakes �s�30�, to observe the dependence of the border
effect on earthquake size.2

For the conservative regime, as can be seen in Fig. 1�a�,
the border effect is clearly weaker than in the nonconserva-
tive regime, and the decay proceeds slowly toward the bulk.
It does not seem to scale with system size. Moreover, the
dependence on earthquake size appears to be weak for most
of the border effect, except for the very first few layers of
sites close to the border.

Figures 1�c�–1�f� also show the same results for the non-
conservative case, for �=0.18 and 0.22. We notice that the
border effect is composed roughly of three parts. First there
is a thin region, comprised of the first few sites closest to the
border, where the effect is strong and seems to decay expo-
nentially. This region is followed by a thicker layer of sites,

2We realize, however, that this is rather coarse, since, due to the
power-law distribution of event sizes, there is no characteristic
event size to compare to. We wanted only to detect eventual differ-
ences in the statistics from the “very small” events. It would also
take a much longer time to consider only larger earthquakes.

FIG. 1. �Color online� Frequency of epicenters �y axis� as a
function of the distance from the border �x axis�, for different values
of �, L, and earthquakes size s. The data for L=400 in �a� were
shifted upward for clarity. From �c� to �f� the data for different
values of L were collapsed on top of each other by hand. All quan-
tities are dimensionless.
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with a slower but also exponentially decaying effect; and
finally there is a third region in which the decay is not ex-
ponential and proceeds still more slowly toward the bulk of
the system. None of those regions seem to scale with system
size, with the possible exception of the third, longer layer.
The overall border effect seems, however, to depend on the
earthquake size �in the contrast with what was observed in
the conservative case�, as can be seen in Figs. 1�d� and 1�f�,
which shows clearly that the border effect decays more
slowly toward the bulk of the system if only larger events are
considered. In Figs. 1�c�–1�f�, the data for lattices of differ-
ent size L were collapsed by hand, that is, curves were
shifted up and down in order to coincide, since statistics are
different in each case. The slope and the size of the layers,
however, were not changed.

The border effect also depends on �. The closer the sys-
tem is to the conservative regime, the stronger and thicker is
the layer of sites affected by it. Note that for �=0.249, the
almost conservative case �see Fig. 1�b��, the border effect is
so strong that almost no epicenters happen in the bulk of the
system, and only the fast exponentially decaying border ef-
fect is seen. This indicates that the lattice size L=800 is still
too small to study the system in this regime. If we compare
this figure with Fig. 1�a�, we note that there is also evidence
of a sharp transition from the nonconservative to the conser-
vative regime of the model, for which the border dependence
of epicenters is radically different.

The crucial role of the border in this model was already
pointed out by Middleton and Tang �4�, who argued that the
inhomogeneity introduced by the open boundary inhibits the
synchronization of the bulk, which would otherwise reach a
periodic state, as happens with a system with periodic
boundaries. The resulting “self-organization” would begin at
the border and then proceed toward the bulk, following a
power law in time. Also, it has been shown in �4� that, while
the statistics of event sizes in the OFC model does not seem
to obey finite-size scaling �FSS�, this behavior is recovered
only when events inside a smaller internal subset of the ten-
sion lattice are considered. Thus, the existence of nonscaling
border effects is to be expected.

We proceed to examine the dynamics of the epicenters in
the model, but only those unrelated to the nonscaling border
effect. Therefore, unless otherwise noted, we ignored all the
epicenters belonging to an outer layer of 100 sites in the
lattice, for all the systems studied.

IV. SEQUENCES OF EPICENTERS AS A COMPLEX
NETWORK

A graph �or network� is a set of discrete items, called
vertices or nodes, with connections between them, called
edges or links. An edge connecting vertices i and j is di-
rected if it is defined in only one direction �connects vertex i
with vertex j, for instance, but not site j with site i� and a
graph is said to be directed if its edges are directed. There
may be more than one edge between a pair of vertices, and
the graph is called in this case a multigraph. The number of
edges connected to a vertex is called the degree of the vertex;
since there may be more than one edge between two vertices,

the degree of a vertex is not necessarily equal to the number
of its neighbors. If the graph is directed, it is then possible to
talk about out-degree �number of edges leaving a vertex� and
in-degree �number of edges incident to a vertex�. The degree
distribution of a graph, P�k�, gives the probability that a
randomly sampled vertex has degree k. Graphs have been the
subject of systematic study by mathematicians for some
time, but recent years witnessed a growth in the interest in
this subject among physicists, with emphasis on large-scale
statistical properties of graphs. Many statistical mechanics
concepts and techniques have been widely used, and a good
review on recent developments in this subject can be found
in �13�. We will show that some tools of network theory can
help to get a deeper understanding of the dynamics of the
OFC model and maybe of the dynamics of real earthquakes.

The sequence of epicenters in the OFC model can be used
to construct a directed multigraph in the following manner.
Each site that is an epicenter represents a vertex. Two con-
secutive epicenters are connected by a directed edge, from
the first to occur to the second �see Fig. 2�. Since, in prin-
ciple, the same site can become an epicenter two times con-
secutively, loops are allowed �but do not occur often�. It is
also possible for the same sequence of epicenters to happen
more than once, so parallel edges are also allowed. This
graph has certain regularities. The out-degree of every vertex
is always equal to the in-degree, except for the very first and
last epicenters of the sequence, and therefore the total degree
is always an even number. Also, if the direction of the edges
is ignored, the graph is always composed of only one com-
ponent.

We have constructed graphs for the epicenters of the OFC
model with L=400 and 800, and for �=0.25, 0.22, and 0.18.
We also considered the graphs for epicenters of different
earthquake sizes. We then observed the degree distribution
and the degree correlation of the graph. The results for the
nonconservative regime are averages over 5–11 graphs, de-
pending on the size of earthquakes considered, each graph
with 6�106 edges.

A. Degree distribution

Since the in-degree of the network is equal to the out-
degree, it is sufficient to describe only one of the two, and
here we choose arbitrarily the in-degree.

For the conservative regime �Fig. 3�a��, the in-degree dis-
tribution seems to be Poissonian �which gets stretched if

FIG. 2. �Color online� An example of an epicenter graph �right�,
generated from a sequence of epicenters �marked in red �gray��
from a 5�5 tension lattice �left�. The graph corresponds to the
following sequence of epicenters: 3, 20, 23, 13, 20, 17, 2.

NETWORK OF EPICENTERS OF THE OLAMI-FEDER-¼ PHYSICAL REVIEW E 74, 016126 �2006�

016126-3



more sites from the border are considered�, indicating that, in
this regime, epicenters in the bulk of the lattice occur ran-
domly. Moreover, the degree distribution does not depend on
the minimum size of the earthquakes considered.

For the nonconservative regime the situation changes. As
can be seen in Figs. 3�b� and 3�c�, if only larger earthquakes
are considered, the in-degree distribution resembles more a
power law. The exponent of the power law seem to be de-
pendent on �, with smaller � leading to steeper lines. For
�=0.22 and s�30, in Fig. 3�c�, the high fluctuations at the
tail of the in-degree distribution represent a lack of statistics,
due to an average over only five realizations of the graph,
while for s�5, for instance, the average was over ten differ-
ent graphs. For both �=0.22 and 0.18, the difference of in-
clination of the power-law region of the distributions is very
small between the data for s�5 and s�30, indicating that it
is not strongly dependent on the lower bound of the consid-
ered earthquake sizes, provided it is large enough for the
power law to emerge.

B. Correlations between degree distribution and tension
distribution in the lattice

It is interesting to observe where the epicenters happen in
the tension lattice. As has already been shown in �20�, the
stationary state of the OFC model, for ��0.25 �nonconser-
vative�, exhibits patchy synchronized regions within the bulk
of the system with sites that have similar tension, and be-
haves similarly to the OFC model with periodic boundary

conditions, exhibiting heavy synchronization. As can be seen
in Fig. 4, for �=0.18, the epicenters seem to happen mostly
in the frontiers among those synchronized regions, and in
valleylike structures inside the plateaus. As only larger earth-
quakes are considered, the epicenters happen increasingly in
smaller and less structured regions �not shown�. The same
behavior was also observed for �=0.22.

In Fig. 5 can be seen the in-degree of a vertex placed in
the tension lattice, i.e., the number of times a site was an
epicenter, for �=0.18 and s�2. The epicenters seem to be

FIG. 3. �Color online� In-degree distribution P�k� �y axis� as a
function of the in-degree k �x axis�, for different values of L, �, and
earthquake size s. In �a� are shown the distributions for two differ-
ent sizes of the discarded border b, and the solid line is the corre-
sponding Poisson distribution. The data for b=0 were shifted up-
ward for clarity. In �b� and �c� the solid line is the result of fitting a
power law k−� to the data when s�30. The data for different earth-
quake sizes were shifted upward for clarity. All quantities are
dimensionless.

FIG. 4. �Color online� Snapshot of the tension lattice at the
stationary state, for L=800 and �=0.18. The next 104 epicenters,
for earthquake sizes s�2, after this configuration, are marked in
green �light gray�. All quantities are dimensionless.

FIG. 5. �Color online� In-degree of vertices placed in the bulk of
tension lattice, i.e., the number of times a site was an epicenter, for
L=800 and �=0.18. Only earthquakes with sizes s�2 were con-
sidered. All quantities are dimensionless.
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well distributed inside the bulk, but aggregated in stripelike
structures. For s�30 the epicenters seem considerably less
aggregated �not shown�. For �=0.22 the results were ob-
served to be very similar.

C. Degree correlation

One further basic aspect of the epicenter network which
we analyzed was the degree correlation, i.e., how vertices are
connected to each other based on their degrees. We look at
the average in-degree of the nearest “out-neighbors” of a
vertex �vertices that receive an edge coming from it�, as a
function of the degree of the vertex.

We found that for the conservative regime �Fig. 6�a��, the
graph seems to be uncorrelated, with the in-degree of the
nearest neighbors being independent on the in-degree of the
originating vertex. Together with the in-degree distribution
�Poissononian�, this puts this graph closer to the class of
totally random graphs such as the Erdős-Rényi graph �21�.

The situation is again very different for the nonconserva-
tive regime �Figs. 6�b� and 6�c��. In that case, the degrees
seem highly correlated, with vertices with high in-degree
connecting predominantly to other vertices of high in-degree,
which makes the network assortative. The correlation seems
to be linear for higher degrees, when only larger earthquakes
are considered.3 Citation networks �14,15� and other net-
works that are grown with a preferential attachment rule
have a quite different behavior, with an in-degree distribution
following a power law, but in those cases the degree corre-

lation also decays with a power law �22�, converging to a
constant value for large in-degrees. Thus, the dynamics re-
sponsible for generating this network must be fundamentally
different from the dynamics generated by a preferential at-
tachment rule. Recently it has also been found that a very
similar network, when constructed with real earthquake data,
is also assortative and exhibits similar degree correlations
�17�.

What indeed is unveiled by this high correlation among
high in-degree vertices is an attracting dynamics: Connec-
tions from vertices of one type are much more probable to
vertices of the same type, eventually trapping the sequence
of epicenters in a smaller region of the lattice, stretching the
in-degree distribution, and generating the observed in-degree
correlation. This trapping seems to be strongly correlated to
the occurrence of very large earthquakes, and the large-scale
redistribution of tensions that is caused by them. This can be
seen in Fig. 7, where is shown the average in-degree of the
subgraph composed only of the last 105 events, together with
the amplitude of the corresponding events. Whenever a large
earthquake occurs, the average in-degree drops, meaning that
the last epicenters happened in a larger number of sites. In
fact the decay of the average in-degree starts before the main
big earthquake, and seems to occur together with the smaller
events that lead up to it, the so-called foreshocks �8,9,23�.
Thus, the large events, together with their foreshocks, are
responsible for breaking the attractor, and spreading the epi-
centers to a larger region. After the sequence of large events,
the trapping of epicenters starts again, until the next se-
quence of large events sweeps it again. Although we did not
make an extensive analysis to define the degree of certitude
of this observation, monitoring the in-degree of this network
may represent a promising way of predicting an increase in
the probability of observing large earthquakes in a given
fault, and to identify, among the small events, the signature

3The in-degree correlation of the graph for s�1 is also an increas-
ing function, and perhaps also linear. But the lack of vertices of
high degree makes it difficult to be certain.

FIG. 6. �Color online� Average in-degree of nearest out-
neighbors kNN�k� �y axis� as a function of the in-degree k �x axis�,
for different values of L, �, and earthquake size s. The solid lines
are fitted straight lines. All quantities are dimensionless.

FIG. 7. �Color online� Average in-degree of the subgraph com-
posed only of the last 105 events, and the amplitudes of the events
that generated the graph. The regions indicated by the arrows cor-
respond to the subgraphs in Figs. 8 and 9. All quantities are
dimensionless.
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of the foreshocks that precede a main shock.4 Since the net-
work of epicenters generated by the OFC model seems to
reproduce many aspects of the network of epicenters built
from real data �16,17�, including the degree correlation men-
tioned above, it would be interesting to see in more detail if
both graphs are actually generated by the same overall dy-
namics. This, however, would require a more systematic and
thorough analysis of real earthquake data, and therefore
would be better suited for a separate work.

To illustrate the topology of the graph during both situa-
tions, we show a subgraph of the whole network, corre-
sponding to a region of 104 events collected during the pe-
riod that the dynamics is trapped in an attractor �Fig. 8�, and
just after a large earthquake �Fig. 9�, as indicated in Fig. 7.
As can be seen in Fig. 8, the attractor region is dominated by
synchronization, where the same sequence of �103 epicen-
ters occurs repeatedly. During the occurrence of the large
events, the same subgraph looks like Fig. 9, where synchro-
nization is still present, but in a much smaller degree.

V. MARKOV NETWORKS WITH HIDDEN VARIABLES

In this section we describe a general random graph model,
based on hidden variables and a Markov chain. It is based on

a similar class of networks developed by Boguñá et al. �24�,
but modified in order to account for the topology of the
epicenter graph observed in the OFC model. Our goal is to
better understand the type of dynamics that is able to gener-
ate graphs with properties examined in the previous section.

Consider a set of N vertices, where N�1. To each vertex
� is assigned a hidden variable h�, sampled from a distribu-
tion 	�h�. A directed multigraph can be constructed via a
Markov chain, in the following manner. Starting from a ran-
dom vertex 
, a directed edge is added from 
 to � with
probability P�
→���r�h
 ,h��, and likewise from � to any
other vertex � with probability given by r�h� ,h��, and so
forth. After a transient stage, the graph will have properties
that are entirely defined by 	�h� and r�h ,h��. This graph is
rather general, and, in fact, every Markov process generates
such a graph if the discrete states of the chain are thought of
as vertices and the transition as directed edges. With this
basic procedure in mind we can proceed to calculate the
statistical properties of the graph.

In-degree distribution

As in the network of epicenters, every vertex of the net-
work generated in the way described above has the in-degree
equal to the out-degree. Thus, it is sufficient to describe only
one of the two. To find the in-degree distribution of this
graph, one must consider an ensemble of graphs and the
probability in the ensemble of one vertex � receiving one
connection after a time T, w��T�, which is given by

4It is important to note that the data in Fig. 7 show only earth-
quakes that did not initiate inside the discarded outer layer and
whose magnitudes tend to be large, and thus are potentially related
to the anticipated decay of the average in-degree before a main
large event.

FIG. 8. �Color online� Subgraph composed of
104 consecutive epicenters, corresponding to the
marked region at the right in Fig. 7.
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w��T + 1� = �



P�
 → ��w
�T� . �1�

After a long time T, the system reaches the stationary state
w��� given by

w��� = Pnw��� , �2�

where P is the transition matrix defined by P�
→��, w�T� is
the state vector at time T, and n is the period of the solution
�we will consider only n=1 from now on�.

The probability that a vertex 
 has in-degree k after a
time T�1, P�k �
 ,T�, is given simply by the binomial dis-
tribution,

P�k�
,T� = 	T

k

w


k �1 − w
�T−k �
�Tw
�ke−Tw


k!
, �3�

where wk�wk���, which can be approximated by the Pois-
son distribution, as in the rightmost term.

The total in-degree distribution after a time T, P�k �T�, is
then given by

P�k�T� =
1

N
�



P�k�
,T� . �4�

Now since a vertex 
 is labeled uniquely by its hidden
variable h
, we must have then that w
�w�h
�. Thus, w�h�
can be obtained by rewriting Eq. �1�,

w�h� = N�
h

r�h
,h�w�h
�	�h
�dh
, �5�

assuming that h is a continuous variable �the last expression
would just be a sum if it were discrete�. Solving this integral
equation for w�h�, it is possible then to obtain the degree
distribution through Eq. �4�,

P�k,T� = �
h

�Tw�h��ke−Tw�h�

k!
	�h�dh . �6�

1. In-degree correlation

It is also possible to calculate the degree correlation of
this graph. The probability of one vertex 
, with in-degree k,
connecting to another vertex of degree k� is given by

P�k��k,
,T� =
P�k�
,T�
NP�k,T� �

�

P�
 → ��P�k� − 1��,T� . �7�

The total probability of one vertex with degree k connecting
to one of degree k� is then simply

P�k��k,T� = �



P�k��k,
,T� , �8�

and the average in-degree of the nearest out-neighbors is
then just

k̄NN�k,T� = �
k�

k�P�k��k,T� . �9�

In terms of the hidden variables, substituting Eqs. �6� and �3�
in �8� and calculating the sum in Eq. �9�, we have then

k̄NN�k,T� = 1 +
N

P�k,T� � �
h

�Tw�h
��ke−Tw�h
�

k!

� r�h
,h��Tw�h��	�h
�	�h��dh
dh�. �10�

2. Attractor dynamics

We want to understand how correlations such as those
seen in Figs. 6�b� and 6�c� and power-law distributions can
arise from this type of network. For that we must define a

FIG. 9. �Color online� Subgraph composed of
104 consecutive epicenters, corresponding to the
marked region at the left in Fig. 7.
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suitable r�h ,h�� and 	�h�. It is clear that what uniquely de-
fines the in-degree of some vertex is its hidden variable.

Thus, for the in-degree correlation to be of the form k̄NN�k�
�k for large k, we must have that h̄��h��h for large h,

where h̄��h� is the average hidden variable of the out-
neighbors of a vertex with hidden variable h. With this in
mind, we define then the following general expression for
the connection probability:

r�h
,h�� = F�h
�	G�h��h

�

	�h��
�h� � h
� +

G�h
�h�
�

	�h
�
�h�  h
�


�11�

where G�h� is a function that dictates how fast the connec-
tion probability decays for h��h
 �see Fig. 10�, and the
exponent � defines the preference with which vertices with
higher h are chosen. The function F�h
� is simply given by
the normalization condition ��r�h
 ,h��=1.

We considered a few shapes for G�h� and 	�h� and calcu-
lated the degree distribution and degree correlation through
Eqs. �6� and �10�, always for k�1. The results are summa-
rized in Table I.

What we find is that the effect of adopting a connection
probability like the one described by Eq. �11� is to generate
an in-degree distribution corresponding to a stretched form
of 	�h�. If G�h� is independent of h, and the trapping in the
region of similar h is the weakest, we have the following
possibilities. If 	�h� is a power law with exponent �, then
P�k� will also be a power law with exponent in the region �1,
��, approaching 1 if � is large. When 	�h� is an exponential
distribution, the resulting in-degree distribution will be a
stretched exponential as indicated in Table I, which will also

resemble a power law if � is relatively large. Now, consid-
ering a stronger trapping effect with G�h� increasing expo-
nentially, we have that an exponential 	�h�, with decay pa-
rameter �, is enough to create a power-law distribution of
in-degrees, with exponents in the interval �1, ��, approaching
1 with faster G�h�. This means that it is not necessary to
assume an intrinsic scale invariance, represented by a power
law in 	�h�, for the existence of a power law in P�k�. Fur-
thermore, the asymptotic in-degree distribution in this case
does not depend on �, being totally dominated by the trap-
ping behavior, and not by the preference of connection.

The process described above shows a variety of ways in
which graphs with in-degree distributions resembling power
laws and linear in-degree correlation can be created. Looking
at only these properties, it is not possible to know which one
of the possibilities �if any� is more likely to describe the
epicenter network. Moreover, the process above would not
account for the strong synchronization observed in Figs. 8
and 9. After all, the sequences of epicenters are probably not
simple Markovian processes. However, the above model, as
a first approximation, serves the purpose of illustrating how
such correlations and in-degree distribution can occur, and
presents a general analytical framework for further modeling.

VI. CONCLUSIONS

We have shown that the epicenters in the OFC model
occur predominantly near the boundary of the lattice, but this
preference does not seem to scale with system size. This
border affinity depends on the dissipation parameter �, being
less for smaller values of �. It is also dependent on the earth-
quake size, with epicenters of larger earthquakes having a
border effect which decays more slowly toward the bulk. We
have also studied the network of consecutive epicenters, and
found that it is sharply different in the two regimes of the
model. In the conservative regime it is rather featureless,
with uncorrelated in-degree statistics and Poisson in-degree
distribution. However, in the nonconservative regime, it has
an unusual linear degree correlation among vertices of high
degree, and a broad distribution of in-degrees resembling a
power law, but only when the smaller earthquakes are not
considered. The in-degree distribution and correlation in this
regime are similar to what was found very recently for real
earthquakes �16,17�. Furthermore, we noticed that the high
correlation of in-degrees is due to an attractor dynamics
where the occurrence of epicenters tends to synchronize,
with the same sequence of epicenters occurring continuously.
This synchronization is broken by large earthquakes, which
spread the epicenters over a larger portion of the lattice, thus
populating the graph with vertices of smaller in-degree. In-
terestingly, the effects of the large events on the topology of
the epicenter network are noticeable before the actual main
event, and seem to be related to the series of increasingly
larger foreshocks that precede it. Since the prediction of the
OFC model that there would be an in-degree correlation in
the epicenter graph corresponds to what has been recently
found for real earthquakes �17�, further detailed analysis of
this behavior may prove useful for the prediction of large

FIG. 10. �a� Connection probability �Eq. �11�� from a vertex 

to a vertex �, and �b� connection probability from a vertex 
 to any
vertex with hidden variable h�.

TABLE I. Different asymptotic shapes for k̄NN�k� and P�k� for
different shapes of G�h� and 	�h�, for k�1.

	�h� G�h� k̄NN�k� P�k�

h−�

�−1
1 �k �k−��+��/��+1�

�e−�h 1 �k �k−�/��+1�e−Ck1/��+1�

�e−�h e�h �k �k−��+��/�
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earthquakes. Lastly, we described a general analytical net-
work model based on a Markovian process and hidden vari-
ables, which is able to reproduce the most general aspects of
the epicenter network, when a suitable attractor dynamics is
specified. There are several aspects of the dynamics of epi-
centers that remain uncovered. It would be of special interest
to look at other topological properties of the epicenter graph,
such as the dependence of the clustering coefficient on in-
degree, and the existence of community structure �25,26�.
Furthermore, it would also be useful to compare in detail

some of the results here obtained, such as the dynamics re-
sponsible for the in-degree correlation and the epicenter syn-
chronization, with the epicenter network of real earthquakes.
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